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Dynamical Systems are systems, described by one or more equations, that evolve over time. For
example, the growth of a population can be described by dynamic equations. Time can be understood
to be either discrete (day 1, day 2 etc.) or continuous (3.4567... seconds). If we take time to be
continuous, dynamical systems will be described by di�erential equations - equations that involve the
derivative (the instantaneous change) of a function. If we take time to be discrete, dynamical systems
will be described by di�erence equations - equations relating the value of a variable at time t + 1 to
its value at time t. We will look at both cases below.

1 Di�erential Equations

A di�erential equation is an equation which involves an unknown function f(t) and at least one of
its derivatives. Let y = f(t). Then we denote f ′(t) as df

dt (t) or as ẏ(t). A general di�erential equation
is then of the form

ẏ = F (y(t), t)

The purpose of this equation is not to solve for the variable t, but rather to solve for the function y(t).
(Since the function is the unknown, we use y rather than f to label it).

In Economics, di�erential equations are often used to express changes over time. For example, the
change in the capital stock at time t, K̇(t), is a function of the current capital stock K(t), the saving
rate s, and the depreciation rate δ:

K̇(t) = (s− δ)K(t)

Therefore it is common to use t instead of x as the argument of f and refer to ḟ or ẏ as the change
in f over time.

1.1 Types of Di�erential Equations

1. 1st order - Equations which involve the �rst derivative f ′(t) of the function but no higher
derivatives. For example:

ẏ = ky

is a �rst order di�erence equation since it only involves one derivative of f(t).

2. Nth order - Equations which involve the nth order derivatives f (n)(t) of the function. For
example:

ÿ = ky

is a second order di�erential equation since it involves two derivatives of f(t). Also

y(n) = ky

is an nth order di�erential equation.
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2 Dynamical Systems

3. Ordinary - An ordinary di�erential equation is a di�erential equation where the unknown
function takes only one argument. For example, the di�erential equations mentioned thus far
have all been ordinary. However, the equation

y(n) = ky(x, t) · t

is not ordinary since there are two arguments x and t, while

y(n) = ky(t) · t

is ordinary (the only variable is t). All the di�erential equations we will look at will be ordinary.

4. Linear - A di�erential equation is linear if it can be written in the form

y(n) + an−1(t)y(n−1) + · · ·+ a1(t)y = a0(t)

5. Autonomous - An autonomous di�erential equation is one where the only occasion when t
enters the equation is through y. For example

ẏ = ky

is autonomous (t enters only through y(t)) while

ẏ = ky · t

is not (t enters by itself, outside of y(t)).

1.2 Solving Linear Di�erential Equations

Di�erential equations are generally di�cult to solve. Therefore, in this section of the course we will
examine only �rst order linear di�erence equations:

ẏ + p(t)y = q(t).

1.2.1 Special Cases

Notice that if p(t) = 0, then we have a simple integration problem we all know how to solve

ẏ = q(t)⇒ y = Q(t) + C,

where Q(t) is the antiderivative of q(t).

Now let q(t) = 0, and p(t) = −k ∈ R, where k is any constant. Then we must solve the equation

ẏ = ky ⇒ dy

dt
= ky(t).

Rewrite the equation by dividing both sides by y(t). (We are assuming that y(t) 6= 0. y(t) = 0 is
obviously a solution as well.). Then we have

ẏ

y
= k.

Integrating both sides with respect to t we have

ln(y) = kt+ C ⇒ y = ekt+C = γekt,

where γ = eC .
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1.2.2 General Case

If we allow p(t) to be some function but leave q(t) = 0 we can follow the same steps as in the example
with p(t) = −k above and get

ln(y) = H(t) + C ⇒ y = eH(t)+C = γeH(t),

where H(t) =
´
p(t)dt and γ = eC .

In the general case of
ẏ + p(t)y = q(t), p(t) 6= 0, q(t) 6= 0

is solved in the following manner. De�ne a function H(t) such that

H(t) =

ˆ
p(t)dt.

Now multiply the above di�erential equation to get

ẏeH(t) + p(t)yeH(t) = q(t)eH(t)

Notice that by the chain rule, that

d

dt

(
yeH(t)

)
= ẏeH(t) + p(t)yeH(t)

which is equal to the left hand side of the di�erential equation. Therefore

d

dt

(
yeH(t)

)
= q(t)eH(t).

We now integrate both sides to get

yeH(t) =

ˆ
q(t)eH(t)dt+ C,

and then multiply through by e−H(t) to get the general form of the solution:

y = e−H(t)

{ˆ
q(t)eH(t)dt+ C

}
.

Example Find the solution of the equation ẏ = ay + b.
In this case p(t) = −a and q(t) = b. Therefore

H(t) =

ˆ
−adt = −at+ C.

Plugging this into our general solution equation, we have that

y = eat−C
{ˆ

be−at+Cdt+D

}

y = eat−C
{
− b
a
e−at+C +D

}
y = − b

a
+Deat+C

y = − b
a

+ αeat,

where α = DeC .
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1.2.3 Additional Conditions

Sometimes in a problem we are given an initial condition or a terminal condition. We can use these
conditions to help us �nd what the unknown scalars are in our solutions.

Examples

1. Let y(0) = y0. Solve for the general solution to the problem ẏ = ky.
We already know the general solution to this problem is

y = γekt.

We know that when x = 0, y = y0. Plugging these values into the equation we have

y0 = γ.

Therefore, the general solution to the equation is y = y0e
kt.

2. Let y(T ) = yT . Solve for the general solution to the problem ẏ = ky.
We already know the general solution to this problem is

y = γekt.

We know that when t = T , y = yT . Plugging these values into the equation we have

yT = γekT ⇒ γ = yT e
−kT

Therefore, the general solution to the equation is y = yT e
−kT ekt = yT e

k(t−T ).

1.3 Steady States and Phase Diagrams

1.3.1 Finding Steady States

A constant solution y(t) ≡ c is called a steady state for a di�erential equation. It is a solution where
the value of y does not change over time. For example, consider the equation for the capital stock
given above

K̇(t) = (s− δ)K(t)

We are either saving more that the depreciation of the capital stock, less that the value of the de-
preciation of the capital stock, or just equal. If we are equal, then we will have the same amount of
capital next period as we do this period. Then if the saving rate is the same next year as it is this
year, we will just cover depreciation with nothing left over. The capital stock will remain the same as
this year in the third year, and so on. This is called the steady state level of capital.

Now let us consider the di�erential equation ẏ = ay. In order for the level of y to be the same this
year and last year, we must have that y does not change, or ẏ = 0. Therefore, the only value of y for
which this can happen (as long as a 6= 0) is y = 0, and so y = 0 is a steady state to the equation.

In general, one �nds the steady states to the di�erential equation ẏ = F (y, t) by setting ẏ = F (y, t) = 0
and solving the resulting equation for y.

Example Find the steady state for the equation ẏ = b+ ay.
Let ẏ = 0. Then ay = −b, and the steady state value of the solution is y = − b

a .
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1.3.2 Phase Diagrams

A phase diagram is a way to illustrate the steady states of a homogenous di�erential equation
and the behavior of solutions around the steady states. It is a graph of the di�erential equation
ẏ(t) = F (y(t)) with the value of the function y on the horizontal axis and the change in y, ẏ, on
the vertical axis. (Note that we cannot draw a one-dimensional phase diagram for a non-autonomous
di�erential equations since in that case ẏ changes with y(t) and with t.)

Any point at which the graph intersects the horizontal axis, that is, at which ẏ = 0, is a steady state.
At any point at which the graph of ẏ = F (y) is above the horizontal axis, ẏ is positive and therefore y
is increasing. At any point at which the graph of ẏ = F (y) is below the horizontal axis, ẏ is negative
and therefore y is decreasing. We can add arrows along the horizontal axis that indicate this behavior
of y: The arrows will point to the right on any segment on which the graph is above the axis and to
the left on any segment that is below the axis.

For example, let us consider the simple di�erential equation

ẏ = ay.

Here there are two cases:

Case one: a > 0. In this case, the curve is a linear function sloping upward. The only steady state
is at y = 0. Notice that if a > 0, then when y > 0, ẏ > 0. This implies that y is growing over time. If
y < 0, then ẏ < 0, and y is shrinking over time. Therefore, we can see that if the equation starts at
any point other than y0 = 0, the system will diverge to negative in�nity or positive in�nity. Another
way to see this is to take the solution to the equation, y = y0e

at, and let t → ∞. If y0 > 0, then
y →∞, and if y0 < 0, then y → −∞.

Case two: a < 0. In this case, the curve is a linear function sloping downward. Again, the only
steady state is at y = 0. Notice that if a < 0, then when y > 0, ẏ < 0. This implies that y is shrinking
over time. If y < 0, then ẏ > 0, and y is growing over time. Therefore, we can see that if the equation
starts at any point, it will eventually converge to y = 0. Another way to see this is to take the solution
to the equation, y = y0e

at, and let t → ∞. If y0 > 0, then y → 0, and if y0 < 0, then y → 0 also
(remember, a < 0).

1.3.3 Stability

We call a steady state y∗ in the domain asymptotically stable if ∃ r > 0 and B(y∗, r) ⊂ domain
such that if we have as an initial point any y ∈ B(y∗, r), the system will converge to y∗ over time. We
call a system stable if all points in the domain converge to a steady state. Notice that in the previous
example, the system was stable when a < 0, but unstable when a > 0.

It is easy to tell the stability of a steady state from the phase diagram: If the arrows point towards the
steady state from both sides, it is stable. Else it is unstable. A simple test for stability is as follows:
Let ẏ = F (y).

If
dF (y)

dy
|y∗ < 0, then the steady state y∗ is stable

if
dF (y)

dy
|y∗ > 0, then the steady state y∗ is unstable

Example Let ẏ = y2 − 4y + 3. Determine the steady states and their stability.

Solution: Let ẏ = 0. Then 0 = y2 − 4y + 3 = (y − 1)(y − 3). Therefore, we have two steady states,
y = 1 and y = 3.
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Next, take the derivative of ẏ = y2 − 4y + 3 with respect to y to get

dẏ

dy
= 2y − 4.

Evaluated at y = 1, we have
dẏ

dy
|y∗ = 2(1)− 4 = −2 < 0,

therefore y = 1 is a stable steady state. Evaluated at y = 3, we have

dẏ

dy
|y∗ = 2(3)− 4 = 2 > 0,

and we have that y = 3 is an unstable steady state.

2 Systems of Di�erential Equations

Consider the general two-equation system of di�erential equations:

ẋ(t) = F (x(t), y(t), t)

ẏ(t) = G(x(t), y(t), t)

These look like two single di�erential equations, but the problem is that y appears in the equation for
ẋ and x appears in the equation for ẏ. We need to solve them simultaneously.

2.1 Steady States

Just as before, we can �nd the steady state of the system by setting both ẋ = 0 and ẏ = 0.

Examples

1. Let ẋ = ex−1 − 1 and ẏ = yex.
Setting both these equations equal to 0 yields

ẋ = 0⇒ ex−1 = 1⇒ x = 1

ẏ = 0⇒ ye = 0⇒ y = 0

2. Let ẋ = x+ 2y and ẏ = x2 + y.
Setting both these equations equal to 0 yields

ẋ = 0⇒ x = −2y

ẏ = 0⇒ y = −x2 ⇒

x = −2
(
−x2

)
⇒ x(1− 2x) = 0⇒ x = {0, 1

2
} ⇒ y = {0,−1

4
}

Therefore, the two steady states are (x, y) =
{

(0, 0) ,
(
1
2 ,−

1
4

)}
.

3. Let ẋ = e1−x − 1 and ẏ = (2− y)ex.
Setting both these equations equal to 0 yields

ẋ = 0⇒ e1−x = 1⇒ x = 1

ẏ = 0⇒ (2− y)e = 0⇒ y = 2
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Phase Diagrams If we have a two dimensional system as in the example above, we can draw phase
diagram with x on one axis and y on the other (unlike in the one dimensional case, we no longer plot
ẋ or ẏ on an axis). We then draw in the curve in x, y - space along which ẋ = 0 and the curve along
which ẏ = 0. The points of intersection of these two curves are the steady states of the system. To
investigate the behavior of the system, �nd the signs of ẋ and ẏ in each of the segments of the plane
divided by the ẋ = 0 and ẏ = 0 curves. For example, if ẋ > 0 and ẏ < 0, the system is increasing in
x-direction and decreasing in y-direction over time.

2.2 Stability

For a single di�erential equation ẏ = f(y), we could test whether the steady state was stable by
checking whether

df(y)

dy

∣∣∣∣
y∗
< 0.

If so, then the di�erential equation was stable. The condition for systems of di�erential equations is
more complicated, and deals with the eigenvalues of the Jacobian matrix of the system.

Let J be the Jacobian matrix of the system of di�erential equations. Then we can test for stability
as follows:

• y∗ is stable if and only if all eigenvalues of J(y∗) are negative or have negative real parts.

• y∗ is unstable if and only if some eigenvalue of J(y∗) is positive or has positive real parts.

If the Jacobian at y∗ has some pure imaginary or zero eigenvalues and no positive eigenvalues, then
we cannot determine the stability of the steady state by looking at the Jacobian.

Examples revisited

1. Let ẋ = ex−1 − 1 and ẏ = yex.
We already calculated that the steady state of the system will be z = (x, y) = (1, 0). The
Jacobian of the system is (

ex−1 0
yex ex

)
(z) =

(
1 0
0 e

)
,

which implies that the eigenvalues of the system are 1 and e. Since both of these are positive,
we have an unstable steady state.

2. Let ẋ = x+ 2y and ẏ = x2 + y.
We already calculated that the steady states of the system are z = (x, y) = {(0, 0), ( 1

2 ,−
1
4 )}.

The Jacobian of the system is (
1 2

2x 1

)
.

When z = (0, 0), then we have the Jacobian(
1 2
0 1

)
which implies that the repeated eigenvalue is 1. Since both of these are positive, (0, 0) is an
unstable steady state.
When z = ( 1

2 ,−
1
4 ), then we have the Jacobian(

1 2
1 1

)
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and solving for the eigenvalues yields λ = 1±
√

2. Since one of them is positive, ( 1
2 ,−

1
4 is also

an unstable steady state.

3. Let ẋ = e1−x − 1 and ẏ = (2− y)ex.
We already calculated that the steady state of the system will be z = (x, y) = (1, 2). The
Jacobian of the system is (

−e1−x 0
(2− y)ex −ex

)
(z) =

(
−1 0
0 −e

)
,

which implies that the eigenvalues of the system are −1 and −e. Since both of these are negative,
we have a stable steady state.

2.3 Solving Systems of Linear Di�erential Equations

Consider the linear system of di�erential equations:

ẋ = a11x+ a12y

ẏ = a21x+ a22y

which can be expressed as
ẋ = Ax,

where x = (x, y)′, ẋ = (ẋ, ẏ)′, and A =

(
a11 a12
a21 a22

)
. Also assume that y0 and x0 are given.

Consider the case where A is a diagonal matrix, i.e that a12 = a21 = 0. Then the new system is

ẋ = a11x,

ẏ = a22y,

whose solution is
x = x0e

a11t,

y = y0e
a22t.

That was easy! We can also easily see that the eigenvalues of the Jacobian matrix will be a11 and a22,
and therefore the system will be stable if both a11 and a22 are less than zero.

For the case where a12 6= 0 or a21 6= 0, the solution is more complicated. However, if we can diagonalize
A, we can transform the system ẋ = Ax into ẋ = PΛP−1x, then multiply both sides by P to get

P−1ẋ = ΛP−1x.

If we de�ne ẇ = P−1ẋ and w = P−1x, then we have

ẇ = Λw.

where Λ is a diagonal matrix. The solution for this system is

w(t) =

(
c1e

λ1t

c2e
λ2t

)
where λ1 and λ2 are the eigenvalues of A and the diagonal entries of Λ, as we saw before.
Now we can transform the solution for w back to x by multiplying with P on the left:

x(t) = Pw(t) = c1e
λ1tp1 + c2e

λ2tp2

where p1 and p1 are the eigenvectors of A.
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Example Solve the following system of di�erential equations:

ẋ = x− y

ẏ = −4x+ y

The system can be rewritten as

ẋ = Ax =

(
ẋ
ẏ

)
=

(
1 −1
−4 1

)(
x
y

)
.

The characteristic equation for A is

(1− λ)2 − 4 = λ2 − 2λ− 3 = (λ− 3)(λ+ 1) = 0,

and therefore the eigenvalues of the matrix A are λ = {3,−1}. Therefore, we know the system will
be unstable.

The matrix A− Iλ associated with λ = 3 is(
−2 −1
−4 −2

)
,

which implies that y = −2x, and therefore (1,−2)′ is the corresponding eigenvector. For λ = 1, we
have that

A− Iλ =

(
2 −1
−4 2

)
,

which implies that y = 2x, or that (1, 2)′ is the corresponding eigenvector.

We can now form the matrix

P =

(
1 1
−2 2

)
⇒ P−1 =

1

4

(
2 −1
2 1

)
.

Let w = P−1x. We now have the system
ẇ = Λw,

whose solution is
wx = c1e

3t,

wy = c2e
−t

where c1 and c2 are constants. Finally, since we have w = P−1x, then x = Pw,

x = wx + wy = c1e
3t + c2e

−t

y = −2wx + 2wy = −2c1e
3t + 2c2e

−t

or (
x
y

)
= c1e

3t

(
1
−2

)
+ c2e

−t
(

1
2

)
.

If we are given initial conditions x(0) = x0 = (x0, y0)T , we can �nd the values of the constants
c = (c0, c1)T from c = P−1x0. (This works because c are the initial conditions when our system is
transformed to the variables w = Px.)
So in our example,

c1 = wx0 =
1

2
x0 −

1

4
y0

c2 = wy0 =
1

2
x0 +

1

4
y0
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and

x =

{
1

2
x0 −

1

4
y0

}
e3t +

{
1

2
x0 +

1

4
y0

}
e−t

y =

{
−x0 +

1

2
y0

}
e3t +

{
x0 +

1

2
y0

}
e−t.

Notice that this procedure only works if A is diagonalizable. If A is not diagonalizable, we have to use
something called the generalized eigenvectors of A and the formula for the general solution becomes
slightly more complicated.
In particular, let A be a 2 x 2 matrix with one repeated eigenvalue λ and only one linearly independent
eigenvector p. Then there exists a vector q such that (A − λI)q = p and (A − λI)2q = 0, which is
called the generalized eigenvector of A.
The general solution to the system ẋ = Ax is

x(t) = eλt(c1p + c2q) + teλtc2p.

(Why this works, see Simon & Blume, page 681.)

2.4 Non-Linear Systems

Finding general solutions of non-linear systems can be extremely di�cult if not impossible. However,
we can �nd a �rst-order estimate of the solution about a steady state using the Taylor rule. For
example, assume our general system of equations:

ẋ = F (x, y)

ẏ = G(x, y)

Setting these equations equal to zero, we can solve for some steady state (x∗, y∗).

The Taylor expansion gives us an approximation of the function h(x, y) around some point (x∗, y∗).
Notice that the Taylor expansion in this case is

h(x, y) ≈ h(x∗, y∗) + hx(x, y)(x− x∗) + hy(x, y)(y − y∗).

This is a linear approximation of a nonlinear function about (x∗, y∗).

We can use the Taylor approximation to rewrite the system of di�erential equations about (x∗, y∗):

ẋ ≈ F (x∗, y∗) + Fx(x∗, y∗)(x− x∗) + Fy(x∗, y∗)(y − y∗)

ẏ ≈ G(x∗, y∗) +Gx(x∗, y∗)(x− x∗) +Gy(x∗, y∗)(y − y∗).

This can we rewritten is the form ẋ = Ax + c, where

A =

(
Fx(x∗, y∗) Fy(x∗, y∗)
Gx(x∗, y∗) Gy(x∗, y∗)

)
, ẋ =

(
ẋ
ẏ

)
, x =

(
x
y

)
, c =

(
c1
c2

)
,

and c1, c2 are constants. In a way, however, the constants don't matter because they just shift our
phase diagram around. They don't actually a�ect the stability or motion of the system. We can then
proceed to �nd an approximation of the system using the diagonalization process presented in the last
section.
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3 Di�erence Equations

A di�erence equation is an equation which evolves over discrete time intervals. For example, a
di�erence equation would be a function which would tell us what the value of some variable y is for
any given time t. We generally have some starting initial point for t (usually t = 0), and we may or
may not have a terminal point for t. Consider the function

yt = bty0,

where b ∈ R. This is a di�erence equation. We can plug whatever we want in for t and get the value
of the function at that point. For example, if b = 0.5 and y0 = 1, then we have the following evolution
of y over time:

y0 = 1, y1 = 0.5, y2 = .25, . . . , yn =
1

2n

Sometimes we are not given an explicit solution for yt, but are given a rule of how yt evolves over one
period. For example,

yt+1 = (1 + b)yt.

3.1 Solving Di�erence Equations

Say we have some initial condition y0, and consider the di�erence equation

yt+1 = ayt.

The equation can be solved iteratively by simply starting with t = 0, calculating y1, then using that
solution to calculate y2, and so forth. For example:

y0 = y0

y1 = ay0

y2 = ay1 = a · ay0 = a2y0

y3 = ay3 = a · a2y0 = a3y0

...

We can look at the pattern and infer that a solution to the di�erence equation will be of the form:

yt = aty0.

3.2 Relationship Between Continuous and Discrete Time

Subtract yt from both sides of the equation

yt+1 = (1 + b)yt

to get
∆yt = yt+1 − yt = byt

Notice that this looks a lot like the di�erential equation

ẏ = by.

In fact, if instead of time moving in discrete units, time moved continuously, then the di�erence
equation above would be the same as the di�erential equation. To see this, consider the di�erence
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equation governing the growth of an asset given a constant interest rate, and is compounded once per
period:

At+1 = At(1 + r).

Now consider the same equation, except time now is measured in half-increments. In other words, the
interest is compounded twice per period, but at the same annual rate r:

At+1 = At

(
1 +

r

2

)2

Now consider the case where interest is compounded n times per period:

At+1 = At

(
1 +

r

n

)n
.

The limit of this function as n→∞ is

At+1 = Ate
r,

Solving this di�erence equation we have

At = A0e
rt

which is the solution to the di�erential equation Ȧ = rA. Therefore, the equation At+1 = (1 + r)At
is the discrete time counterpart of the di�erential equation Ȧ = rA.

3.3 Properties of the Solution yt = aty0

We have solved the di�erential equation yt+1 = ayt. What happens to yt as t→∞? There are seven
cases, with subcases under them:

Case 1: a > 1. Here we can see that as t→∞, at →∞. Therefore, the system diverges to +∞ or
−∞, depending on whether y0 is greater or less than 0.

Case 2: a = 1. If a = 1, then the system will stay at its initial condition y0, no matter what y0 is.

Case 3: a ∈ (0, 1). In this case, as t→∞, at → 0. Therefore, yt → 0 as t→ 0. Also, the sequence
of yts will be strictly monotonically decreasing if y0 > 0, and monotonically increasing if y0 < 0.

Case 4: a = 0. The system immediately jumps to y1 = 0 no matter where y0 is, and then yt = 0 ∀
t thereafter.

Case 5: a ∈ (−1, 0). In this case, as t → ∞, at → 0. Therefore, yt → 0 as t → 0. However, the
sequence of yts will oscillate between positive and negative values as t→∞.

Case 6: a = −1. If a = −1, then yt = y0 for t ∈ {even integers} yt = −y0 for t ∈ {odd integers}.

Case 7: a < −1. As t → ∞, the subsequence ate → ∞ and ato → −∞, where te denotes even
integers and to denotes odd integers. Therefore, the system oscillates between positive and negative
values, with the magnitude of oscillate growing to in�nity over time.

Subcase to all 7 cases: y0 = 0. In the case y0 = 0, we have that yt = 0 ∀ t.
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3.4 Steady States

The condition for a steady state for di�erential equations was that ẏ = 0. For di�erence equations,
the condition is similar:

∆yt = 0, i. e.yt+1 = yt.

Intuitively, if we can �nd a value of y such which will be the same next period, then that level of y
must be a steady state. Therefore, in our di�erence equation we plug in yt for yt+1 and solve:

yt = ayt ⇒ yt(1− a) = 0⇒ yt = 0 or a = 1

Therefore, the steady state solution to our di�erential equation is y = 0 for any value of a. This makes
sense, because we already saw during our analysis of cases that yt = 0 ∀ t when y0 = 0. If a = 1, then
any y is a steady state since yt = yt for all yt.

3.5 Stability of Steady States

Looking at our seven cases for the asymptotics of yt+1 = ayt, we see that we converge to the steady

state y = 0 whenever |a| < 1. We can generalize this condition by noticing that a = ∂yt+1

∂yt
. In general,

a steady state y∗ of a di�erence equation is

unstable if

∣∣∣∣∂yt+1

∂yt
(y∗)

∣∣∣∣ > 1

stable if

∣∣∣∣∂yt+1

∂yt
(y∗)

∣∣∣∣ < 1

This is very similar to the conditions for stability of di�erential equations.

3.6 Nonlinear example

Consider the following evolution of capital in an economy:

kt+1 = kt − (δ + n)kt + sf(kt)

This says that the level of capital per capita next year is equal to the level of capital this year, minus
depreciated capital and capital dilution from population growth, plus the di�erence between output
and consumption. We seek to analyze the dynamics of capital in this economy. Assume that f(kt) is
a concave function, and f(0) = 0, f ′(0) = ∞, and limn→∞ f ′(n) = 0. Also assume that δ + n < 1,
δ, n, s ∈ (0, 1).

First we wish to �nd a steady state level of capital per capita. We set kt+1 = kt to get

kt+1 = kt − (δ + n)kt + sf(kt)⇒

(δ + n)k∗ = sf(k∗).

This will pin down some level of capital k∗. Notice that k∗ = 0 is a steady state, as will some k∗ > 0
by the concavity of f(k). We can �nd this point graphically by plotting kt+1 as a function of kt and
determining its point of intersection with the 45 degree line, along which kt = kt+1.

Checking for stability, we take the derivative of the function kt+1 with respect to kt to get

∂kt+1

∂kt
= 1− (δ + n) + sf ′(kt)

Therefore, we have that the system is stable if f ′(k∗) < δ+n
s . For the steady state k∗ = 0, we have

that f ′(0) =∞, and therefore the system is unstable in this case. However, by the concavity of f(kt)
the steady state k∗ > 0 must be stable since δ+n

s k∗ = f(k∗). Therefore we have one stable steady
state and one unstable steady state.
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4 Homework

4.1 Single Di�erential Equations

1. Find the general solutions to the following equations.

(a) ẏ − 2y = 1

(b) 2ẏ + 5y = 2

(c) ẏ − 2y = 1− 2x

(d) xẏ − 4y = −2nx

(e) ẏ = exy

2. Find the general solutions to the previous questions given that y0 = 1.

3. Draw the phase diagram for the equation k̇(t) = f(k)−c− (δ+n)k, where f(k) > 0 when k > 0,
f(k) = 0 when k = 0, and f(k) is a concave function which intersects the line c+(d+n)k = f(k)

at two points. Also draw the phase diagram for ċ(t)
c = 1

σ (f ′(k)− θ − n), where σ, θ, n ∈ R, and
f(k) is the same as before. Check the stability of each of the equations. Find their general
solutions. Graph k and c is separate graphs with respect to time on the horizontal axis.

4.2 Di�erence Equations

Solve the di�erence equation yt+1 = by2t . Find the steady states. Graph the function with respect to
time. Draw the phase diagrams. Determine stability of the steady states. (Hint: there will be several
cases.) What about byt+1 = ay2t + c? (This is complicated, so think about it graphically for starters.
Don't worry if you can't �nish the whole problem with all the cases.)
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